The break and continue
loop control commands
[1]
correspond exactly to their counterparts in other
programming languages. The break
command terminates the loop (breaks out of it), while
continue causes a jump to the next
iteration (repetition) of the loop,
skipping all the remaining commands in that particular
loop cycle.
Example 10-20. Effects of break and
continue in a loop
#!/bin/bash
LIMIT=19 # Upper limit
echo
echo "Printing Numbers 1 through 20 (but not 3 and 11)."
a=0
while [ $a -le "$LIMIT" ]
do
a=$(($a+1))
if [ "$a" -eq 3 ] || [ "$a" -eq 11 ] # Excludes 3 and 11.
then
continue # Skip rest of this particular loop iteration.
fi
echo -n "$a " # This will not execute for 3 and 11.
done
# Exercise:
# Why does loop print up to 20?
echo; echo
echo Printing Numbers 1 through 20, but something happens after 2.
##################################################################
# Same loop, but substituting 'break' for 'continue'.
a=0
while [ "$a" -le "$LIMIT" ]
do
a=$(($a+1))
if [ "$a" -gt 2 ]
then
break # Skip entire rest of loop.
fi
echo -n "$a "
done
echo; echo; echo
exit 0
The break command may optionally take a
parameter. A plain break terminates
only the innermost loop in which it is embedded,
but a break N breaks out of
N levels of loop.
Example 10-21. Breaking out of multiple loop levels
#!/bin/bash
# break-levels.sh: Breaking out of loops.
# "break N" breaks out of N level loops.
for outerloop in 1 2 3 4 5
do
echo -n "Group $outerloop: "
# --------------------------------------------------------
for innerloop in 1 2 3 4 5
do
echo -n "$innerloop "
if [ "$innerloop" -eq 3 ]
then
break # Try break 2 to see what happens.
# ("Breaks" out of both inner and outer loops.)
fi
done
# --------------------------------------------------------
echo
done
echo
exit 0
The continue command, similar to
break, optionally takes a parameter. A
plain continue cuts short the
current iteration within its loop and begins the next.
A continue N terminates all remaining
iterations at its loop level and continues with the
next iteration at the loop, N levels
above.
Example 10-22. Continuing at a higher loop level
#!/bin/bash
# The "continue N" command, continuing at the Nth level loop.
for outer in I II III IV V # outer loop
do
echo; echo -n "Group $outer: "
# --------------------------------------------------------------------
for inner in 1 2 3 4 5 6 7 8 9 10 # inner loop
do
if [ "$inner" -eq 7 ]
then
continue 2 # Continue at loop on 2nd level, that is "outer loop".
# Replace above line with a simple "continue"
# to see normal loop behavior.
fi
echo -n "$inner " # 7 8 9 10 will never echo.
done
# --------------------------------------------------------------------
done
echo; echo
# Exercise:
# Come up with a meaningful use for "continue N" in a script.
exit 0
Example 10-23. Using "continue N" in an actual task
# Albert Reiner gives an example of how to use "continue N":
# ---------------------------------------------------------
# Suppose I have a large number of jobs that need to be run, with
#+ any data that is to be treated in files of a given name pattern in a
#+ directory. There are several machines that access this directory, and
#+ I want to distribute the work over these different boxen. Then I
#+ usually nohup something like the following on every box:
while true
do
for n in .iso.*
do
[ "$n" = ".iso.opts" ] && continue
beta=${n#.iso.}
[ -r .Iso.$beta ] && continue
[ -r .lock.$beta ] && sleep 10 && continue
lockfile -r0 .lock.$beta || continue
echo -n "$beta: " `date`
run-isotherm $beta
date
ls -alF .Iso.$beta
[ -r .Iso.$beta ] && rm -f .lock.$beta
continue 2
done
break
done
# The details, in particular the sleep N, are particular to my
#+ application, but the general pattern is:
while true
do
for job in {pattern}
do
{job already done or running} && continue
{mark job as running, do job, mark job as done}
continue 2
done
break # Or something like `sleep 600' to avoid termination.
done
# This way the script will stop only when there are no more jobs to do
#+ (including jobs that were added during runtime). Through the use
#+ of appropriate lockfiles it can be run on several machines
#+ concurrently without duplication of calculations [which run a couple
#+ of hours in my case, so I really want to avoid this]. Also, as search
#+ always starts again from the beginning, one can encode priorities in
#+ the file names. Of course, one could also do this without `continue 2',
#+ but then one would have to actually check whether or not some job
#+ was done (so that we should immediately look for the next job) or not
#+ (in which case we terminate or sleep for a long time before checking
#+ for a new job).
The continue N construct is
difficult to understand and tricky to use in any meaningful
context. It is probably best avoided.