Follow Techotopia on Twitter

On-line Guides
All Guides
eBook Store
iOS / Android
Linux for Beginners
Office Productivity
Linux Installation
Linux Security
Linux Utilities
Linux Virtualization
Linux Kernel
System/Network Admin
Programming
Scripting Languages
Development Tools
Web Development
GUI Toolkits/Desktop
Databases
Mail Systems
openSolaris
Eclipse Documentation
Techotopia.com
Virtuatopia.com
Answertopia.com

How To Guides
Virtualization
General System Admin
Linux Security
Linux Filesystems
Web Servers
Graphics & Desktop
PC Hardware
Windows
Problem Solutions
Privacy Policy

  




 

 

Red Hat Enterprise Linux 9 Essentials Book now available.

Purchase a copy of Red Hat Enterprise Linux 9 (RHEL 9) Essentials

Red Hat Enterprise Linux 9 Essentials Print and eBook (PDF) editions contain 34 chapters and 298 pages

Preview Book

Chapter 18.  Storage I/O Alignment and Size

Recent enhancements to the SCSI and ATA standards allow storage devices to incidate their preferred (and in some cases, required) I/O alignment and I/O size. This information is particularly useful with newer disk drives that increase the physical sector size from 512 bytes to 4k bytes. This information may also be beneficial for RAID devices, where the chunk size and stripe size may impact performance.
The Linux I/O stack has been enhanced to process vendor-provided I/O alignment and I/O size information, allowing storage management tools (parted, lvm, mkfs.*, and the like) to optimize data placement and access. If a legacy device does not export I/O alignment and size data, then storage management tools in Red Hat Enterprise Linux 6 will conservatively align I/O on a 4k (or larger power of 2) boundary. This will ensure that 4k-sector devices operate correctly even if they do not indicate any required/preferred I/O alignment and size.

Note

Red Hat Enterprise Linux 6 supports 4k-sector devices as data disks, not as boot disks. Boot support for 4k-sector devices is planned for a later release.
Refer to Section 18.2, “Userspace Access” to learn how to determine the information that the operating system obtained from the device. This data is subsequently used by the storage management tools to determine data placement.

18.1. Parameters for Storage Access

The operating system uses the following information to determine I/O alignment and size:
physical_block_size
Smallest internal unit on which the device can operate
logical_block_size
Used externally to address a location on the device
alignment_offset
Tthe number of bytes that the beginning of the Linux block device (partition/MD/LVM device) is offset from the underlying physical alignment
minimum_io_size
The device’s preferred minimum unit for random I/O
optimal_io_size
The device’s preferred unit for streaming I/O
For example, certain 4K sector devices may use a 4K physical_block_size internally but expose a more granular 512-byte logical_block_size to Linux. This discrepancy introduces potential for misaligned I/O. To address this, the Red Hat Enterprise Linux 6 I/O stack will attempt to start all data areas on a naturally-aligned boundary (physical_block_size) by making sure it accounts for any alignment_offset if the beginning of the block device is offset from the underlying physical alignment.
Storage vendors can also supply I/O hints about the preferred minimum unit for random I/O (minimum_io_size) and streaming I/O (optimal_io_size) of a device. For example, minimum_io_size and optimal_io_size may correspond to a RAID device's chunk size and stripe size respectively.

 
 
  Published under the terms of the Creative Commons License Design by Interspire