Follow Techotopia on Twitter

On-line Guides
All Guides
eBook Store
iOS / Android
Linux for Beginners
Office Productivity
Linux Installation
Linux Security
Linux Utilities
Linux Virtualization
Linux Kernel
System/Network Admin
Programming
Scripting Languages
Development Tools
Web Development
GUI Toolkits/Desktop
Databases
Mail Systems
openSolaris
Eclipse Documentation
Techotopia.com
Virtuatopia.com
Answertopia.com

How To Guides
Virtualization
General System Admin
Linux Security
Linux Filesystems
Web Servers
Graphics & Desktop
PC Hardware
Windows
Problem Solutions
Privacy Policy

  




 

 

Red Hat Enterprise Linux 9 Essentials Book now available.

Purchase a copy of Red Hat Enterprise Linux 9 (RHEL 9) Essentials

Red Hat Enterprise Linux 9 Essentials Print and eBook (PDF) editions contain 34 chapters and 298 pages

Preview Book

Chapter 38. OProfile

OProfile is a low overhead, system-wide performance monitoring tool. It uses the performance monitoring hardware on the processor to retrieve information about the kernel and executables on the system, such as when memory is referenced, the number of L2 cache requests, and the number of hardware interrupts received. On a Red Hat Enterprise Linux system, the oprofile RPM package must be installed to use this tool.

Many processors include dedicated performance monitoring hardware. This hardware makes it possible to detect when certain events happen (such as the requested data not being in cache). The hardware normally takes the form of one or more counters that are incremented each time an event takes place. When the counter value, essentially rolls over, an interrupt is generated, making it possible to control the amount of detail (and therefore, overhead) produced by performance monitoring.

OProfile uses this hardware (or a timer-based substitute in cases where performance monitoring hardware is not present) to collect samples of performance-related data each time a counter generates an interrupt. These samples are periodically written out to disk; later, the data contained in these samples can then be used to generate reports on system-level and application-level performance.

OProfile is a useful tool, but be aware of some limitations when using it:

  • Use of shared libraries — Samples for code in shared libraries are not attributed to the particular application unless the --separate=library option is used.

  • Performance monitoring samples are inexact — When a performance monitoring register triggers a sample, the interrupt handling is not precise like a divide by zero exception. Due to the out-of-order execution of instructions by the processor, the sample may be recorded on a nearby instruction.

  • opreport does not associate samples for inline functions' properlyopreport uses a simple address range mechanism to determine which function an address is in. Inline function samples are not attributed to the inline function but rather to the function the inline function was inserted into.

  • OProfile accumulates data from multiple runs — OProfile is a system-wide profiler and expects processes to start up and shut down multiple times. Thus, samples from multiple runs accumulate. Use the command opcontrol --reset to clear out the samples from previous runs.

  • Non-CPU-limited performance problems — OProfile is oriented to finding problems with CPU-limited processes. OProfile does not identify processes that are asleep because they are waiting on locks or for some other event to occur (for example an I/O device to finish an operation).

38.1. Overview of Tools

Table 38.1, “OProfile Commands” provides a brief overview of the tools provided with the oprofile package.

Command Description
ophelp

Displays available events for the system's processor along with a brief description of each.

opimport

Converts sample database files from a foreign binary format to the native format for the system. Only use this option when analyzing a sample database from a different architecture.

opannotate Creates annotated source for an executable if the application was compiled with debugging symbols. Refer to Section 38.5.4, “Using opannotate” for details.
opcontrol

Configures what data is collected. Refer to Section 38.2, “Configuring OProfile” for details.

opreport

Retrieves profile data. Refer to Section 38.5.1, “Using opreport” for details.

oprofiled

Runs as a daemon to periodically write sample data to disk.

Table 38.1. OProfile Commands


 
 
  Published under the terms of the Open Publication License Design by Interspire