- object-file-name
A file name that does not end in a special recognized suffix is
considered to name an object file or library. (Object files are
distinguished from libraries by the linker according to the file
contents.) If linking is done, these object files are used as input
to the linker.
- -c, -S, -E
If any of these options is used, then the linker is not run, and
object file names should not be used as arguments. Section 4.2 Options Controlling the Kind of Output.
- -llibrary, -l library
Search the library named library when linking. (The second
alternative with the library as a separate argument is only for
POSIX compliance and is not recommended.)
It makes a difference where in the command you write this option; the
linker searches and processes libraries and object files in the order they
are specified. Thus, foo.o -lz bar.o searches library z
after file foo.o but before bar.o. If bar.o refers
to functions in z, those functions may not be loaded.
The linker searches a standard list of directories for the library,
which is actually a file named liblibrary.a. The linker
then uses this file as if it had been specified precisely by name.
The directories searched include several standard system directories
plus any that you specify with -L.
Normally the files found this way are library files--archive files
whose members are object files. The linker handles an archive file by
scanning through it for members which define symbols that have so far
been referenced but not defined. But if the file that is found is an
ordinary object file, it is linked in the usual fashion. The only
difference between using an -l option and specifying a file name
is that -l surrounds library with lib and .a
and searches several directories.
- -lobjc
You need this special case of the -l option in order to
link an Objective-C program.
- -nostartfiles
Do not use the standard system startup files when linking.
The standard system libraries are used normally, unless -nostdlib
or -nodefaultlibs is used.
- -nodefaultlibs
Do not use the standard system libraries when linking.
Only the libraries you specify will be passed to the linker.
The standard startup files are used normally, unless -nostartfiles
is used. The compiler may generate calls to memcmp, memset, and memcpy
for System V (and ISO C) environments or to bcopy and bzero for
BSD environments. These entries are usually resolved by entries in
libc. These entry points should be supplied through some other
mechanism when this option is specified.
- -nostdlib
Do not use the standard system startup files or libraries when linking.
No startup files and only the libraries you specify will be passed to
the linker. The compiler may generate calls to memcmp, memset, and memcpy
for System V (and ISO C) environments or to bcopy and bzero for
BSD environments. These entries are usually resolved by entries in
libc. These entry points should be supplied through some other
mechanism when this option is specified.
One of the standard libraries bypassed by -nostdlib and
-nodefaultlibs is libgcc.a, a library of internal subroutines
that GCC uses to overcome shortcomings of particular machines, or special
needs for some languages.
(,
for more discussion of libgcc.a.)
In most cases, you need libgcc.a even when you want to avoid
other standard libraries. In other words, when you specify -nostdlib
or -nodefaultlibs you should usually specify -lgcc as well.
This ensures that you have no unresolved references to internal GCC
library subroutines. (For example, __main, used to ensure C++
constructors will be called; .)
- -pie
Produce a position independent executable on targets which support it.
For predictable results, you must also specify the same set of options
that were used to generate code (-fpie, -fPIE,
or model suboptions) when you specify this option.
- -s
Remove all symbol table and relocation information from the executable.
- -static
On systems that support dynamic linking, this prevents linking with the shared
libraries. On other systems, this option has no effect.
- -shared
Produce a shared object which can then be linked with other objects to
form an executable. Not all systems support this option. For predictable
results, you must also specify the same set of options that were used to
generate code (-fpic, -fPIC, or model suboptions)
when you specify this option.[1]
- -shared-libgcc, -static-libgcc
On systems that provide libgcc as a shared library, these options
force the use of either the shared or static version respectively.
If no shared version of libgcc was built when the compiler was
configured, these options have no effect.
There are several situations in which an application should use the
shared libgcc instead of the static version. The most common
of these is when the application wishes to throw and catch exceptions
across different shared libraries. In that case, each of the libraries
as well as the application itself should use the shared libgcc.
Therefore, the G++ and GCJ drivers automatically add
-shared-libgcc whenever you build a shared library or a main
executable, because C++ and Java programs typically use exceptions, so
this is the right thing to do.
If, instead, you use the GCC driver to create shared libraries, you may
find that they will not always be linked with the shared libgcc.
If GCC finds, at its configuration time, that you have a non-GNU linker
or a GNU linker that does not support option -eh-frame-hdr,
it will link the shared version of libgcc into shared libraries
by default. Otherwise, it will take advantage of the linker and optimize
away the linking with the shared version of libgcc, linking with
the static version of libgcc by default. This allows exceptions to
propagate through such shared libraries, without incurring relocation
costs at library load time.
However, if a library or main executable is supposed to throw or catch
exceptions, you must link it using the G++ or GCJ driver, as appropriate
for the languages used in the program, or using the option
-shared-libgcc, such that it is linked with the shared
libgcc.
- -symbolic
Bind references to global symbols when building a shared object. Warn
about any unresolved references (unless overridden by the link editor
option -Xlinker -z -Xlinker defs). Only a few systems support
this option.
- -Xlinker option
Pass option as an option to the linker. You can use this to
supply system-specific linker options which GCC does not know how to
recognize.
If you want to pass an option that takes an argument, you must use
-Xlinker twice, once for the option and once for the argument.
For example, to pass -assert definitions, you must write
-Xlinker -assert -Xlinker definitions. It does not work to write
-Xlinker "-assert definitions", because this passes the entire
string as a single argument, which is not what the linker expects.
- -Wl,option
Pass option as an option to the linker. If option contains
commas, it is split into multiple options at the commas.
- -u symbol
Pretend the symbol symbol is undefined, to force linking of
library modules to define it. You can use -u multiple times with
different symbols to force loading of additional library modules.