|
|
|
|
Stash & Stack with inlines
Armed with inlines, we can now convert
the Stash and Stack classes to be more
efficient:
//: C09:Stash4.h
// Inline functions
#ifndef STASH4_H
#define STASH4_H
#include "../require.h"
class Stash {
int size; // Size of each space
int quantity; // Number of storage spaces
int next; // Next empty space
// Dynamically allocated array of bytes:
unsigned char* storage;
void inflate(int increase);
public:
Stash(int sz) : size(sz), quantity(0),
next(0), storage(0) {}
Stash(int sz, int initQuantity) : size(sz),
quantity(0), next(0), storage(0) {
inflate(initQuantity);
}
Stash::~Stash() {
if(storage != 0)
delete []storage;
}
int add(void* element);
void* fetch(int index) const {
require(0 <= index, "Stash::fetch (-)index");
if(index >= next)
return 0; // To indicate the end
// Produce pointer to desired element:
return &(storage[index * size]);
}
int count() const { return next; }
};
#endif // STASH4_H ///:~
The small functions obviously work well
as inlines, but notice that the two largest functions are still left as
non-inlines, since inlining them probably wouldn’t cause any performance
gains:
//: C09:Stash4.cpp {O}
#include "Stash4.h"
#include <iostream>
#include <cassert>
using namespace std;
const int increment = 100;
int Stash::add(void* element) {
if(next >= quantity) // Enough space left?
inflate(increment);
// Copy element into storage,
// starting at next empty space:
int startBytes = next * size;
unsigned char* e = (unsigned char*)element;
for(int i = 0; i < size; i++)
storage[startBytes + i] = e[i];
next++;
return(next - 1); // Index number
}
void Stash::inflate(int increase) {
assert(increase >= 0);
if(increase == 0) return;
int newQuantity = quantity + increase;
int newBytes = newQuantity * size;
int oldBytes = quantity * size;
unsigned char* b = new unsigned char[newBytes];
for(int i = 0; i < oldBytes; i++)
b[i] = storage[i]; // Copy old to new
delete [](storage); // Release old storage
storage = b; // Point to new memory
quantity = newQuantity; // Adjust the size
} ///:~
Once again, the test program verifies
that everything is working correctly:
//: C09:Stash4Test.cpp
//{L} Stash4
#include "Stash4.h"
#include "../require.h"
#include <fstream>
#include <iostream>
#include <string>
using namespace std;
int main() {
Stash intStash(sizeof(int));
for(int i = 0; i < 100; i++)
intStash.add(&i);
for(int j = 0; j < intStash.count(); j++)
cout << "intStash.fetch(" << j << ") = "
<< *(int*)intStash.fetch(j)
<< endl;
const int bufsize = 80;
Stash stringStash(sizeof(char) * bufsize, 100);
ifstream in("Stash4Test.cpp");
assure(in, "Stash4Test.cpp");
string line;
while(getline(in, line))
stringStash.add((char*)line.c_str());
int k = 0;
char* cp;
while((cp = (char*)stringStash.fetch(k++))!=0)
cout << "stringStash.fetch(" << k << ") = "
<< cp << endl;
} ///:~
This is the same test program that was
used before, so the output should be basically the same.
The Stack class makes even better
use of inlines:
//: C09:Stack4.h
// With inlines
#ifndef STACK4_H
#define STACK4_H
#include "../require.h"
class Stack {
struct Link {
void* data;
Link* next;
Link(void* dat, Link* nxt):
data(dat), next(nxt) {}
}* head;
public:
Stack() : head(0) {}
~Stack() {
require(head == 0, "Stack not empty");
}
void push(void* dat) {
head = new Link(dat, head);
}
void* peek() const {
return head ? head->data : 0;
}
void* pop() {
if(head == 0) return 0;
void* result = head->data;
Link* oldHead = head;
head = head->next;
delete oldHead;
return result;
}
};
#endif // STACK4_H ///:~
Notice that the Link destructor
that was present but empty in the previous version of Stack has been
removed. In pop( ), the expression delete oldHead simply
releases the memory used by that Link (it does not destroy the data
object pointed to by the Link).
Most of the functions inline quite nicely
and obviously, especially for Link. Even pop( ) seems
legitimate, although anytime you have conditionals or local variables it’s
not clear that inlines will be that beneficial. Here, the function is small
enough that it probably won’t hurt anything.
If all your functions are inlined,
using the library becomes quite simple because there’s no linking
necessary, as you can see in the test example (notice that there’s no
Stack4.cpp):
//: C09:Stack4Test.cpp
//{T} Stack4Test.cpp
#include "Stack4.h"
#include "../require.h"
#include <fstream>
#include <iostream>
#include <string>
using namespace std;
int main(int argc, char* argv[]) {
requireArgs(argc, 1); // File name is argument
ifstream in(argv[1]);
assure(in, argv[1]);
Stack textlines;
string line;
// Read file and store lines in the stack:
while(getline(in, line))
textlines.push(new string(line));
// Pop the lines from the stack and print them:
string* s;
while((s = (string*)textlines.pop()) != 0) {
cout << *s << endl;
delete s;
}
} ///:~
People will sometimes write classes with
all inline functions so that the whole class will be in the header file
(you’ll see in this book that I step over the line myself). During program
development this is probably harmless, although sometimes it can make for longer
compilations. Once the program stabilizes a bit, you’ll probably want to
go back and make functions non-inline where
appropriate.
|
|
|