PL/pgSQL can be used to define trigger procedures. A trigger procedure is created with the CREATE FUNCTION command, declaring it as a function with no arguments and a return type of trigger. Note that the function must be declared with no arguments even if it expects to receive arguments specified in CREATE TRIGGER — trigger arguments are passed via TG_ARGV, as described below.
When a PL/pgSQL function is called as a trigger, several special variables are created automatically in the top-level block. They are:
-
NEW
-
Data type RECORD; variable holding the new database row for INSERT/UPDATE operations in row-level triggers. This variable is NULL in statement-level triggers.
-
OLD
-
Data type RECORD; variable holding the old database row for UPDATE/DELETE operations in row-level triggers. This variable is NULL in statement-level triggers.
-
TG_NAME
-
Data type name; variable that contains the name of the trigger actually fired.
-
TG_WHEN
-
Data type text; a string of either BEFORE or AFTER depending on the trigger's definition.
-
TG_LEVEL
-
Data type text; a string of either ROW or STATEMENT depending on the trigger's definition.
-
TG_OP
-
Data type text; a string of INSERT, UPDATE, or DELETE telling for which operation the trigger was fired.
-
TG_RELID
-
Data type oid; the object ID of the table that caused the trigger invocation.
-
TG_RELNAME
-
Data type name; the name of the table that caused the trigger invocation.
-
TG_NARGS
-
Data type integer; the number of arguments given to the trigger procedure in the CREATE TRIGGER statement.
-
TG_ARGV[]
-
Data type array of text; the arguments from the CREATE TRIGGER statement. The index counts from 0. Invalid indices (less than 0 or greater than or equal to tg_nargs) result in a null value.
A trigger function must return either NULL or a record/row value having exactly the structure of the table the trigger was fired for.
Row-level triggers fired BEFORE may return null to signal the trigger manager to skip the rest of the operation for this row (i.e., subsequent triggers are not fired, and the INSERT/UPDATE/DELETE does not occur for this row). If a nonnull value is returned then the operation proceeds with that row value. Returning a row value different from the original value of NEW alters the row that will be inserted or updated (but has no direct effect in the DELETE case). To alter the row to be stored, it is possible to replace single values directly in NEW and return the modified NEW, or to build a complete new record/row to return.
The return value of a BEFORE or AFTER statement-level trigger or an AFTER row-level trigger is always ignored; it may as well be null. However, any of these types of triggers can still abort the entire operation by raising an error.
Example 36-2 shows an example of a trigger procedure in PL/pgSQL.
Example 36-2. A PL/pgSQL Trigger Procedure
This example trigger ensures that any time a row is inserted or updated in the table, the current user name and time are stamped into the row. And it checks that an employee's name is given and that the salary is a positive value.
CREATE TABLE emp (
empname text,
salary integer,
last_date timestamp,
last_user text
);
CREATE FUNCTION emp_stamp() RETURNS trigger AS $emp_stamp$
BEGIN
-- Check that empname and salary are given
IF NEW.empname IS NULL THEN
RAISE EXCEPTION 'empname cannot be null';
END IF;
IF NEW.salary IS NULL THEN
RAISE EXCEPTION '% cannot have null salary', NEW.empname;
END IF;
-- Who works for us when she must pay for it?
IF NEW.salary < 0 THEN
RAISE EXCEPTION '% cannot have a negative salary', NEW.empname;
END IF;
-- Remember who changed the payroll when
NEW.last_date := current_timestamp;
NEW.last_user := current_user;
RETURN NEW;
END;
$emp_stamp$ LANGUAGE plpgsql;
CREATE TRIGGER emp_stamp BEFORE INSERT OR UPDATE ON emp
FOR EACH ROW EXECUTE PROCEDURE emp_stamp();
Another way to log changes to a table involves creating a new table that holds a row for each insert, update, or delete that occurs. This approach can be thought of as auditing changes to a table. Example 36-3 shows an example of an audit trigger procedure in PL/pgSQL.
Example 36-3. A PL/pgSQL Trigger Procedure For Auditing
This example trigger ensures that any insert, update or delete of a row in the emp table is recorded (i.e., audited) in the emp_audit table. The current time and user name are stamped into the row, together with the type of operation performed on it.
CREATE TABLE emp (
empname text NOT NULL,
salary integer
);
CREATE TABLE emp_audit(
operation char(1) NOT NULL,
stamp timestamp NOT NULL,
userid text NOT NULL,
empname text NOT NULL,
salary integer
);
CREATE OR REPLACE FUNCTION process_emp_audit() RETURNS TRIGGER AS $emp_audit$
BEGIN
--
-- Create a row in emp_audit to reflect the operation performed on emp,
-- make use of the special variable TG_OP to work out the operation.
--
IF (TG_OP = 'DELETE') THEN
INSERT INTO emp_audit SELECT 'D', now(), user, OLD.*;
RETURN OLD;
ELSIF (TG_OP = 'UPDATE') THEN
INSERT INTO emp_audit SELECT 'U', now(), user, NEW.*;
RETURN NEW;
ELSIF (TG_OP = 'INSERT') THEN
INSERT INTO emp_audit SELECT 'I', now(), user, NEW.*;
RETURN NEW;
END IF;
RETURN NULL; -- result is ignored since this is an AFTER trigger
END;
$emp_audit$ LANGUAGE plpgsql;
CREATE TRIGGER emp_audit
AFTER INSERT OR UPDATE OR DELETE ON emp
FOR EACH ROW EXECUTE PROCEDURE process_emp_audit();
One use of triggers is to maintain a summary table of another table. The resulting summary can be used in place of the original table for certain queries — often with vastly reduced run times. This technique is commonly used in Data Warehousing, where the tables of measured or observed data (called fact tables) can be extremely large. Example 36-4 shows an example of a trigger procedure in PL/pgSQL that maintains a summary table for a fact table in a data warehouse.
Example 36-4. A PL/pgSQL Trigger Procedure For Maintaining A Summary Table
The schema detailed here is partly based on the
Grocery Store
example from
The Data Warehouse Toolkit
by Ralph Kimball.
--
-- Main tables - time dimension and sales fact.
--
CREATE TABLE time_dimension (
time_key integer NOT NULL,
day_of_week integer NOT NULL,
day_of_month integer NOT NULL,
month integer NOT NULL,
quarter integer NOT NULL,
year integer NOT NULL
);
CREATE UNIQUE INDEX time_dimension_key ON time_dimension(time_key);
CREATE TABLE sales_fact (
time_key integer NOT NULL,
product_key integer NOT NULL,
store_key integer NOT NULL,
amount_sold numeric(12,2) NOT NULL,
units_sold integer NOT NULL,
amount_cost numeric(12,2) NOT NULL
);
CREATE INDEX sales_fact_time ON sales_fact(time_key);
--
-- Summary table - sales by time.
--
CREATE TABLE sales_summary_bytime (
time_key integer NOT NULL,
amount_sold numeric(15,2) NOT NULL,
units_sold numeric(12) NOT NULL,
amount_cost numeric(15,2) NOT NULL
);
CREATE UNIQUE INDEX sales_summary_bytime_key ON sales_summary_bytime(time_key);
--
-- Function and trigger to amend summarized column(s) on UPDATE, INSERT, DELETE.
--
CREATE OR REPLACE FUNCTION maint_sales_summary_bytime() RETURNS TRIGGER AS $maint_sales_summary_bytime$
DECLARE
delta_time_key integer;
delta_amount_sold numeric(15,2);
delta_units_sold numeric(12);
delta_amount_cost numeric(15,2);
BEGIN
-- Work out the increment/decrement amount(s).
IF (TG_OP = 'DELETE') THEN
delta_time_key = OLD.time_key;
delta_amount_sold = -1 * OLD.amount_sold;
delta_units_sold = -1 * OLD.units_sold;
delta_amount_cost = -1 * OLD.amount_cost;
ELSIF (TG_OP = 'UPDATE') THEN
-- forbid updates that change the time_key -
-- (probably not too onerous, as DELETE + INSERT is how most
-- changes will be made).
IF ( OLD.time_key != NEW.time_key) THEN
RAISE EXCEPTION 'Update of time_key : % -> % not allowed', OLD.time_key, NEW.time_key;
END IF;
delta_time_key = OLD.time_key;
delta_amount_sold = NEW.amount_sold - OLD.amount_sold;
delta_units_sold = NEW.units_sold - OLD.units_sold;
delta_amount_cost = NEW.amount_cost - OLD.amount_cost;
ELSIF (TG_OP = 'INSERT') THEN
delta_time_key = NEW.time_key;
delta_amount_sold = NEW.amount_sold;
delta_units_sold = NEW.units_sold;
delta_amount_cost = NEW.amount_cost;
END IF;
-- Insert or update the summary row with the new values.
<<insert_update>>
LOOP
UPDATE sales_summary_bytime
SET amount_sold = amount_sold + delta_amount_sold,
units_sold = units_sold + delta_units_sold,
amount_cost = amount_cost + delta_amount_cost
WHERE time_key = delta_time_key;
EXIT insert_update WHEN found;
BEGIN
INSERT INTO sales_summary_bytime (
time_key,
amount_sold,
units_sold,
amount_cost)
VALUES (
delta_time_key,
delta_amount_sold,
delta_units_sold,
delta_amount_cost
);
EXIT insert_update;
EXCEPTION
WHEN UNIQUE_VIOLATION THEN
-- do nothing
END;
END LOOP insert_update;
RETURN NULL;
END;
$maint_sales_summary_bytime$ LANGUAGE plpgsql;
CREATE TRIGGER maint_sales_summary_bytime
AFTER INSERT OR UPDATE OR DELETE ON sales_fact
FOR EACH ROW EXECUTE PROCEDURE maint_sales_summary_bytime();
INSERT INTO sales_fact VALUES(1,1,1,10,3,15);
INSERT INTO sales_fact VALUES(1,2,1,20,5,35);
INSERT INTO sales_fact VALUES(2,2,1,40,15,135);
INSERT INTO sales_fact VALUES(2,3,1,10,1,13);
SELECT * FROM sales_summary_bytime;
DELETE FROM sales_fact WHERE product_key = 1;
SELECT * FROM sales_summary_bytime;
UPDATE sales_fact SET units_sold = units_sold * 2;
SELECT * FROM sales_summary_bytime;