Follow Techotopia on Twitter

On-line Guides
All Guides
eBook Store
iOS / Android
Linux for Beginners
Office Productivity
Linux Installation
Linux Security
Linux Utilities
Linux Virtualization
Linux Kernel
System/Network Admin
Programming
Scripting Languages
Development Tools
Web Development
GUI Toolkits/Desktop
Databases
Mail Systems
openSolaris
Eclipse Documentation
Techotopia.com
Virtuatopia.com
Answertopia.com

How To Guides
Virtualization
General System Admin
Linux Security
Linux Filesystems
Web Servers
Graphics & Desktop
PC Hardware
Windows
Problem Solutions
Privacy Policy

  




 

 

Chapter 6. Data Manipulation

Table of Contents
6.1. Inserting Data
6.2. Updating Data
6.3. Deleting Data

The previous chapter discussed how to create tables and other structures to hold your data. Now it is time to fill the tables with data. This chapter covers how to insert, update, and delete table data. We also introduce ways to effect automatic data changes when certain events occur: triggers and rewrite rules. The chapter after this will finally explain how to extract your long-lost data back out of the database.

6.1. Inserting Data

When a table is created, it contains no data. The first thing to do before a database can be of much use is to insert data. Data is conceptually inserted one row at a time. Of course you can also insert more than one row, but there is no way to insert less than one row at a time. Even if you know only some column values, a complete row must be created.

To create a new row, use the INSERT command. The command requires the table name and a value for each of the columns of the table. For example, consider the products table from Chapter 5:

CREATE TABLE products (
    product_no integer,
    name text,
    price numeric
);

An example command to insert a row would be:

INSERT INTO products VALUES (1, 'Cheese', 9.99);

The data values are listed in the order in which the columns appear in the table, separated by commas. Usually, the data values will be literals (constants), but scalar expressions are also allowed.

The above syntax has the drawback that you need to know the order of the columns in the table. To avoid that you can also list the columns explicitly. For example, both of the following commands have the same effect as the one above:

INSERT INTO products (product_no, name, price) VALUES (1, 'Cheese', 9.99);
INSERT INTO products (name, price, product_no) VALUES ('Cheese', 9.99, 1);

Many users consider it good practice to always list the column names.

If you don't have values for all the columns, you can omit some of them. In that case, the columns will be filled with their default values. For example,

INSERT INTO products (product_no, name) VALUES (1, 'Cheese');
INSERT INTO products VALUES (1, 'Cheese');

The second form is a PostgreSQL extension. It fills the columns from the left with as many values as are given, and the rest will be defaulted.

For clarity, you can also request default values explicitly, for individual columns or for the entire row:

INSERT INTO products (product_no, name, price) VALUES (1, 'Cheese', DEFAULT);
INSERT INTO products DEFAULT VALUES;

Tip: To do "bulk loads", that is, inserting a lot of data, take a look at the COPY command. It is not as flexible as the INSERT command, but is more efficient. Refer to Section 13.4 for more information on improving bulk loading performance.


 
 
  Published courtesy of The PostgreSQL Global Development Group Design by Interspire