Linuxtopia - Red Hat Enterprise Linux Security Guide -
Follow Techotopia on Twitter

On-line Guides
All Guides
eBook Store
iOS / Android
Linux for Beginners
Office Productivity
Linux Installation
Linux Security
Linux Utilities
Linux Virtualization
Linux Kernel
System/Network Admin
Programming
Scripting Languages
Development Tools
Web Development
GUI Toolkits/Desktop
Databases
Mail Systems
openSolaris
Eclipse Documentation
Techotopia.com
Virtuatopia.com
Answertopia.com

How To Guides
Virtualization
General System Admin
Linux Security
Linux Filesystems
Web Servers
Graphics & Desktop
PC Hardware
Windows
Problem Solutions
Privacy Policy

  




 

 

NAME="GENERATOR" CONTENT="Modular DocBook HTML Stylesheet Version 1.7">

7.4. FORWARD and NAT Rules

Most organizations are allotted a limited number of publicly routable IP addresses from their ISP. Due to this limited allowance, administrators must find creative ways to share access to Internet services without giving limited public IP addresses to every node on the LAN. Using private IP address is the common way to allow all nodes on a LAN to properly access internal and external network services. Edge routers (such as firewalls) can receive incoming transmissions from the Internet and route the packets to the intended LAN node. At the same time, firewall/gateways can also route outgoing requests from a LAN node to the remote Internet service. This forwarding of network traffic can become dangerous at times, especially with the availability of modern cracking tools that can spoof internal IP addresses and make the remote attacker's machine act as a node on your LAN. To prevent this, iptables provides routing and forwarding policies that can be implemented to prevent aberrant usage of network resources.

The FORWARD policy allows an administrator to control where packets can be routed within a LAN. For example, to allow forwarding for the entire LAN (assuming the firewall/gateway is assigned an internal IP address on eth1), the following rules can be set:

iptables -A FORWARD -i eth1 -j ACCEPT
iptables -A FORWARD -o eth1 -j ACCEPT

This rule gives systems behind the firewall/gateway access to the internal network. The gateway routes packets from one LAN node to its intended destination node, passing all packets through its eth1 device.

NoteNote
 

By default, the IPv4 policy in Red Hat Enterprise Linux kernels disables support for IP forwarding, which prevents boxes running Red Hat Enterprise Linux from functioning as dedicated edge routers. To enable IP forwarding, run the following command:

sysctl -w net.ipv4.ip_forward=1

If this command is run via shell prompt, then the setting is not remembered after a reboot. You can permanently set forwarding by editing the /etc/sysctl.conf file. Find and edit the following line, replacing 0 with 1:

net.ipv4.ip_forward = 0

Execute the following command to enable the change to the sysctl.conf file:

sysctl -p /etc/sysctl.conf

Accepting forwarded packets via the firewall's internal IP device allows LAN nodes to communicate with each other; however they still are not allowed to communicate externally to the Internet. To allow LAN nodes with private IP addresses to communicate with external public networks, configure the firewall for IP masquerading, which masks requests from LAN nodes with the IP address of the firewall's external device (in this case, eth0):

iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE

The rule uses the NAT packet matching table (-t nat) and specifies the built-in POSTROUTING chain for NAT (-A POSTROUTING) on the firewall's external networking device (-o eth0). POSTROUTING allows packets to be altered as they are leaving the firewall's external device. The -j MASQUERADE target is specified to mask the private IP address of a node with the external IP address of the firewall/gateway.

If you have a server on your internal network that you want make available externally, you can use the -j DNAT target of the PREROUTING chain in NAT to specify a destination IP address and port where incoming packets requesting a connection to your internal service can be forwarded. For example, if you wanted to forward incoming HTTP requests to your dedicated Apache HTTP Server server system at 172.31.0.23, run the following command:

iptables -t nat -A PREROUTING -i eth0 -p tcp --dport 80 -j DNAT \
      --to 172.31.0.23:80

This rule specifies that the NAT table use the built-in PREROUTING chain to forward incoming HTTP requests exclusively to the listed destination IP address of 172.31.0.23.

NoteNote
 

If you have a default policy of DROP in your FORWARD chain, you must append a rule to allow forwarding of incoming HTTP requests so that destination NAT routing can be possible. To do this, run the following command:

iptables -A FORWARD -i eth0 -p tcp --dport 80 -d 172.31.0.23 -j ACCEPT

This rule allows forwarding of incoming HTTP requests from the firewall to its intended destination of the Apache HTTP Server server behind the firewall.

7.4.1. DMZs and iptables

iptables rules can be set to route traffic to certain machines, such as a dedicated HTTP or FTP server, in a demilitarized zone (DMZ) — a special local subnetwork dedicated to providing services on a public carrier such as the Internet. For example, to set a rule for routing incoming HTTP requests to a dedicated HTTP server at 10.0.4.2 (outside of the 192.168.1.0/24 range of the LAN), NAT calls a PREROUTING table to forward the packets to their proper destination:

iptables -t nat -A PREROUTING -i eth0 -p tcp --dport 80 -j DNAT \
	    --to-destination 10.0.4.2:80

With this command, all HTTP connections to port 80 from the outside of the LAN are routed to the HTTP server on a separate network from the rest of the internal network. This form of network segmentation can prove safer than allowing HTTP connections to a machine on the network. If the HTTP server is configured to accept secure connections, then port 443 must be forwarded as well.

 
 
  Published under the terms of the GNU General Public License Design by Interspire