- -fno-default-inline
Do not make member functions inline by default merely because they are
defined inside the class scope (C++ only). Otherwise, when you specify
-O, member functions defined inside class scope are compiled
inline by default; i.e., you don't need to add inline in front of
the member function name.
- -fno-defer-pop
Always pop the arguments to each function call as soon as that function
returns. For machines which must pop arguments after a function call,
the compiler normally lets arguments accumulate on the stack for several
function calls and pops them all at once.
Disabled at levels -O, -O2, -O3, -Os.
- -fforce-mem
Force memory operands to be copied into registers before doing
arithmetic on them. This produces better code by making all memory
references potential common subexpressions. When they are not common
subexpressions, instruction combination should eliminate the separate
register-load.
Enabled at levels -O2, -O3, -Os.
- -fforce-addr
Force memory address constants to be copied into registers before
doing arithmetic on them. This may produce better code just as
-fforce-mem may.
- -fomit-frame-pointer
Don't keep the frame pointer in a register for functions that
don't need one. This avoids the instructions to save, set up and
restore frame pointers; it also makes an extra register available
in many functions. It also makes debugging impossible on
some machines.
On some machines, such as the VAX, this flag has no effect, because
the standard calling sequence automatically handles the frame pointer
and nothing is saved by pretending it doesn't exist. The
machine-description macro FRAME_POINTER_REQUIRED controls
whether a target machine supports this flag.
Enabled at levels -O, -O2, -O3, -Os.
- -foptimize-sibling-calls
Optimize sibling and tail recursive calls.
Enabled at levels -O2, -O3, -Os.
- -fno-inline
Don't pay attention to the inline keyword. Normally this option
is used to keep the compiler from expanding any functions inline.
Note that if you are not optimizing, no functions can be expanded inline.
- -finline-functions
Integrate all simple functions into their callers. The compiler
heuristically decides which functions are simple enough to be worth
integrating in this way.
If all calls to a given function are integrated, and the function is
declared static, then the function is normally not output as
assembler code in its own right.
Enabled at level -O3.
- -finline-limit=n
By default, GCC limits the size of functions that can be inlined. This flag
allows the control of this limit for functions that are explicitly marked as
inline (i.e., marked with the inline keyword or defined within the class
definition in c++). n is the size of functions that can be inlined in
number of pseudo instructions (not counting parameter handling). The default
value of n is 600.
Increasing this value can result in more inlined code at
the cost of compilation time and memory consumption. Decreasing usually makes
the compilation faster and less code will be inlined (which presumably
means slower programs). This option is particularly useful for programs that
use inlining heavily such as those based on recursive templates with C++.
Inlining is actually controlled by a number of parameters, which may be
specified individually by using -param name=value.
The -finline-limit=n option sets some of these parameters
as follows:
- max-inline-insns-single
is set to n/2.
- max-inline-insns-auto
is set to n/2.
- min-inline-insns
is set to 130 or n/4, whichever is smaller.
- max-inline-insns-rtl
is set to n.
See below for a documentation of the individual
parameters controlling inlining.
Note: pseudo instruction represents, in this particular context, an
abstract measurement of function's size. In no way, it represents a count
of assembly instructions and as such its exact meaning might change from one
release to an another.
- -fkeep-inline-functions
Even if all calls to a given function are integrated, and the function
is declared static, nevertheless output a separate run-time
callable version of the function. This switch does not affect
extern inline functions.
- -fkeep-static-consts
Emit variables declared static const when optimization isn't turned
on, even if the variables aren't referenced.
GCC enables this option by default. If you want to force the compiler to
check if the variable was referenced, regardless of whether or not
optimization is turned on, use the -fno-keep-static-consts option.
- -fmerge-constants
Attempt to merge identical constants (string constants and floating point
constants) across compilation units.
This option is the default for optimized compilation if the assembler and
linker support it. Use -fno-merge-constants to inhibit this
behavior.
Enabled at levels -O, -O2, -O3, -Os.
- -fmerge-all-constants
Attempt to merge identical constants and identical variables.
This option implies -fmerge-constants. In addition to
-fmerge-constants this considers e.g. even constant initialized
arrays or initialized constant variables with integral or floating point
types. Languages like C or C++ require each non-automatic variable to
have distinct location, so using this option will result in non-conforming
behavior.
- -fnew-ra
Use a graph coloring register allocator. Currently this option is meant
only for testing. Users should not specify this option, since it is not
yet ready for production use.
- -fno-branch-count-reg
Do not use "decrement and branch" instructions on a count register,
but instead generate a sequence of instructions that decrement a
register, compare it against zero, then branch based upon the result.
This option is only meaningful on architectures that support such
instructions, which include x86, PowerPC, IA-64 and S/390.
The default is -fbranch-count-reg, enabled when
-fstrength-reduce is enabled.
- -fno-function-cse
Do not put function addresses in registers; make each instruction that
calls a constant function contain the function's address explicitly.
This option results in less efficient code, but some strange hacks
that alter the assembler output may be confused by the optimizations
performed when this option is not used.
The default is -ffunction-cse
- -fno-zero-initialized-in-bss
If the target supports a BSS section, GCC by default puts variables that
are initialized to zero into BSS. This can save space in the resulting
code.
This option turns off this behavior because some programs explicitly
rely on variables going to the data section. E.g., so that the
resulting executable can find the beginning of that section and/or make
assumptions based on that.
The default is -fzero-initialized-in-bss.
- -fstrength-reduce
Perform the optimizations of loop strength reduction and
elimination of iteration variables.
Enabled at levels -O2, -O3, -Os.
- -fthread-jumps
Perform optimizations where we check to see if a jump branches to a
location where another comparison subsumed by the first is found. If
so, the first branch is redirected to either the destination of the
second branch or a point immediately following it, depending on whether
the condition is known to be true or false.
Enabled at levels -O, -O2, -O3, -Os.
- -fcse-follow-jumps
In common subexpression elimination, scan through jump instructions
when the target of the jump is not reached by any other path. For
example, when CSE encounters an if statement with an
else clause, CSE will follow the jump when the condition
tested is false.
Enabled at levels -O2, -O3, -Os.
- -fcse-skip-blocks
This is similar to -fcse-follow-jumps, but causes CSE to
follow jumps which conditionally skip over blocks. When CSE
encounters a simple if statement with no else clause,
-fcse-skip-blocks causes CSE to follow the jump around the
body of the if.
Enabled at levels -O2, -O3, -Os.
- -frerun-cse-after-loop
Re-run common subexpression elimination after loop optimizations has been
performed.
Enabled at levels -O2, -O3, -Os.
- -frerun-loop-opt
Run the loop optimizer twice.
Enabled at levels -O2, -O3, -Os.
- -fgcse
Perform a global common subexpression elimination pass.
This pass also performs global constant and copy propagation.
Note: When compiling a program using computed gotos, a GCC
extension, you may get better runtime performance if you disable
the global common subexpression elimination pass by adding
-fno-gcse to the command line.
Enabled at levels -O2, -O3, -Os.
- -fgcse-lm
When -fgcse-lm is enabled, global common subexpression elimination will
attempt to move loads which are only killed by stores into themselves. This
allows a loop containing a load/store sequence to be changed to a load outside
the loop, and a copy/store within the loop.
Enabled by default when gcse is enabled.
- -fgcse-sm
When -fgcse-sm is enabled, a store motion pass is run after
global common subexpression elimination. This pass will attempt to move
stores out of loops. When used in conjunction with -fgcse-lm,
loops containing a load/store sequence can be changed to a load before
the loop and a store after the loop.
Enabled by default when gcse is enabled.
- -fgcse-las
When -fgcse-las is enabled, the global common subexpression
elimination pass eliminates redundant loads that come after stores to the
same memory location (both partial and full redundancies).
Enabled by default when gcse is enabled.
- -floop-optimize
Perform loop optimizations: move constant expressions out of loops, simplify
exit test conditions and optionally do strength-reduction and loop unrolling as
well.
Enabled at levels -O, -O2, -O3, -Os.
- -fcrossjumping
Perform cross-jumping transformation. This transformation unifies equivalent code and save code size. The
resulting code may or may not perform better than without cross-jumping.
Enabled at levels -O, -O2, -O3, -Os.
- -fif-conversion
Attempt to transform conditional jumps into branch-less equivalents. This
include use of conditional moves, min, max, set flags and abs instructions, and
some tricks doable by standard arithmetics. The use of conditional execution
on chips where it is available is controlled by if-conversion2.
Enabled at levels -O, -O2, -O3, -Os.
- -fif-conversion2
Use conditional execution (where available) to transform conditional jumps into
branch-less equivalents.
Enabled at levels -O, -O2, -O3, -Os.
- -fdelete-null-pointer-checks
Use global dataflow analysis to identify and eliminate useless checks
for null pointers. The compiler assumes that dereferencing a null
pointer would have halted the program. If a pointer is checked after
it has already been dereferenced, it cannot be null.
In some environments, this assumption is not true, and programs can
safely dereference null pointers. Use
-fno-delete-null-pointer-checks to disable this optimization
for programs which depend on that behavior.
Enabled at levels -O2, -O3, -Os.
- -fexpensive-optimizations
Perform a number of minor optimizations that are relatively expensive.
Enabled at levels -O2, -O3, -Os.
- -foptimize-register-move, -fregmove
Attempt to reassign register numbers in move instructions and as
operands of other simple instructions in order to maximize the amount of
register tying. This is especially helpful on machines with two-operand
instructions.
Note -fregmove and -foptimize-register-move are the same
optimization.
Enabled at levels -O2, -O3, -Os.
- -fdelayed-branch
If supported for the target machine, attempt to reorder instructions
to exploit instruction slots available after delayed branch
instructions.
Enabled at levels -O, -O2, -O3, -Os.
- -fschedule-insns
If supported for the target machine, attempt to reorder instructions to
eliminate execution stalls due to required data being unavailable. This
helps machines that have slow floating point or memory load instructions
by allowing other instructions to be issued until the result of the load
or floating point instruction is required.
Enabled at levels -O2, -O3, -Os.
- -fschedule-insns2
Similar to -fschedule-insns, but requests an additional pass of
instruction scheduling after register allocation has been done. This is
especially useful on machines with a relatively small number of
registers and where memory load instructions take more than one cycle.
Enabled at levels -O2, -O3, -Os.
- -fno-sched-interblock
Don't schedule instructions across basic blocks. This is normally
enabled by default when scheduling before register allocation, i.e.
with -fschedule-insns or at -O2 or higher.
- -fno-sched-spec
Don't allow speculative motion of non-load instructions. This is normally
enabled by default when scheduling before register allocation, i.e.
with -fschedule-insns or at -O2 or higher.
- -fsched-spec-load
Allow speculative motion of some load instructions. This only makes
sense when scheduling before register allocation, i.e. with
-fschedule-insns or at -O2 or higher.
- -fsched-spec-load-dangerous
Allow speculative motion of more load instructions. This only makes
sense when scheduling before register allocation, i.e. with
-fschedule-insns or at -O2 or higher.
- -fsched-stalled-insns=n
Define how many insns (if any) can be moved prematurely from the queue
of stalled insns into the ready list, during the second scheduling pass.
- -fsched-stalled-insns-dep=n
Define how many insn groups (cycles) will be examined for a dependency
on a stalled insn that is candidate for premature removal from the queue
of stalled insns. Has an effect only during the second scheduling pass,
and only if -fsched-stalled-insns is used and its value is not zero.
- -fsched2-use-superblocks
When scheduling after register allocation, do use superblock scheduling
algorithm. Superblock scheduling allows motion across basic block boundaries
resulting on faster schedules. This option is experimental, as not all machine
descriptions used by GCC model the CPU closely enough to avoid unreliable
results from the algorithm.
This only makes sense when scheduling after register allocation, i.e. with
-fschedule-insns2 or at -O2 or higher.
- -fsched2-use-traces
Use -fsched2-use-superblocks algorithm when scheduling after register
allocation and additionally perform code duplication in order to increase the
size of superblocks using tracer pass. See -ftracer for details on
trace formation.
This mode should produce faster but significantly longer programs. Also
without -fbranch-probabilities the traces constructed may not match the
reality and hurt the performance. This only makes
sense when scheduling after register allocation, i.e. with
-fschedule-insns2 or at -O2 or higher.
- -fcaller-saves
Enable values to be allocated in registers that will be clobbered by
function calls, by emitting extra instructions to save and restore the
registers around such calls. Such allocation is done only when it
seems to result in better code than would otherwise be produced.
This option is always enabled by default on certain machines, usually
those which have no call-preserved registers to use instead.
Enabled at levels -O2, -O3, -Os.
- -fmove-all-movables
Forces all invariant computations in loops to be moved
outside the loop.
- -freduce-all-givs
Forces all general-induction variables in loops to be
strength-reduced.
Note: When compiling programs written in Fortran,
-fmove-all-movables and -freduce-all-givs are enabled
by default when you use the optimizer.
These options may generate better or worse code; results are highly
dependent on the structure of loops within the source code.
These two options are intended to be removed someday, once
they have helped determine the efficacy of various
approaches to improving loop optimizations.
Please contact mailto:gcc@@gcc.gnu.org, and describe how use of
these options affects the performance of your production code.
Examples of code that runs slower when these options are
enabled are very valuable.
- -fno-peephole, -fno-peephole2
Disable any machine-specific peephole optimizations. The difference
between -fno-peephole and -fno-peephole2 is in how they
are implemented in the compiler; some targets use one, some use the
other, a few use both.
-fpeephole is enabled by default.
-fpeephole2 enabled at levels -O2, -O3, -Os.
- -fno-guess-branch-probability
Do not guess branch probabilities using a randomized model.
Sometimes GCC will opt to use a randomized model to guess branch
probabilities, when none are available from either profiling feedback
(-fprofile-arcs) or __builtin_expect. This means that
different runs of the compiler on the same program may produce different
object code.
In a hard real-time system, people don't want different runs of the
compiler to produce code that has different behavior; minimizing
non-determinism is of paramount import. This switch allows users to
reduce non-determinism, possibly at the expense of inferior
optimization.
The default is -fguess-branch-probability at levels
-O, -O2, -O3, -Os.
- -freorder-blocks
Reorder basic blocks in the compiled function in order to reduce number of
taken branches and improve code locality.
Enabled at levels -O2, -O3.
- -freorder-functions
Reorder basic blocks in the compiled function in order to reduce number of
taken branches and improve code locality. This is implemented by using special
subsections .text.hot for most frequently executed functions and
.text.unlikely for unlikely executed functions. Reordering is done by
the linker so object file format must support named sections and linker must
place them in a reasonable way.
Also profile feedback must be available in to make this option effective. See
-fprofile-arcs for details.
Enabled at levels -O2, -O3, -Os.
- -fstrict-aliasing
Allows the compiler to assume the strictest aliasing rules applicable to
the language being compiled. For C (and C++), this activates
optimizations based on the type of expressions. In particular, an
object of one type is assumed never to reside at the same address as an
object of a different type, unless the types are almost the same. For
example, an unsigned int can alias an int, but not a
void* or a double. A character type may alias any other
type.
Pay special attention to code like this:
union a_union {
int i;
double d;
};
int f() {
a_union t;
t.d = 3.0;
return t.i;
} |
The practice of reading from a different union member than the one most
recently written to (called "type-punning") is common. Even with
-fstrict-aliasing, type-punning is allowed, provided the memory
is accessed through the union type. So, the code above will work as
expected. However, this code might not:
int f() {
a_union t;
int* ip;
t.d = 3.0;
ip = &t.i;
return *ip;
} |
Every language that wishes to perform language-specific alias analysis
should define a function that computes, given an tree
node, an alias set for the node. Nodes in different alias sets are not
allowed to alias. For an example, see the C front-end function
c_get_alias_set.
Enabled at levels -O2, -O3, -Os.
- -falign-functions, -falign-functions=n
Align the start of functions to the next power-of-two greater than
n, skipping up to n bytes. For instance,
-falign-functions=32 aligns functions to the next 32-byte
boundary, but -falign-functions=24 would align to the next
32-byte boundary only if this can be done by skipping 23 bytes or less.
-fno-align-functions and -falign-functions=1 are
equivalent and mean that functions will not be aligned.
Some assemblers only support this flag when n is a power of two;
in that case, it is rounded up.
If n is not specified or is zero, use a machine-dependent default.
Enabled at levels -O2, -O3.
- -falign-labels, -falign-labels=n
Align all branch targets to a power-of-two boundary, skipping up to
n bytes like -falign-functions. This option can easily
make code slower, because it must insert dummy operations for when the
branch target is reached in the usual flow of the code.
-fno-align-labels and -falign-labels=1 are
equivalent and mean that labels will not be aligned.
If -falign-loops or -falign-jumps are applicable and
are greater than this value, then their values are used instead.
If n is not specified or is zero, use a machine-dependent default
which is very likely to be 1, meaning no alignment.
Enabled at levels -O2, -O3.
- -falign-loops, -falign-loops=n
Align loops to a power-of-two boundary, skipping up to n bytes
like -falign-functions. The hope is that the loop will be
executed many times, which will make up for any execution of the dummy
operations.
-fno-align-loops and -falign-loops=1 are
equivalent and mean that loops will not be aligned.
If n is not specified or is zero, use a machine-dependent default.
Enabled at levels -O2, -O3.
- -falign-jumps, -falign-jumps=n
Align branch targets to a power-of-two boundary, for branch targets
where the targets can only be reached by jumping, skipping up to n
bytes like -falign-functions. In this case, no dummy operations
need be executed.
-fno-align-jumps and -falign-jumps=1 are
equivalent and mean that loops will not be aligned.
If n is not specified or is zero, use a machine-dependent default.
Enabled at levels -O2, -O3.
- -frename-registers
Attempt to avoid false dependencies in scheduled code by making use
of registers left over after register allocation. This optimization
will most benefit processors with lots of registers. It can, however,
make debugging impossible, since variables will no longer stay in
a "home register".
- -fweb
Constructs webs as commonly used for register allocation purposes and assign
each web individual pseudo register. This allows the register allocation pass
to operate on pseudos directly, but also strengthens several other optimization
passes, such as CSE, loop optimizer and trivial dead code remover. It can,
however, make debugging impossible, since variables will no longer stay in a
"home register".
Enabled at levels -O3.
- -fno-cprop-registers
After register allocation and post-register allocation instruction splitting,
we perform a copy-propagation pass to try to reduce scheduling dependencies
and occasionally eliminate the copy.
Disabled at levels -O, -O2, -O3, -Os.
- -fprofile-generate
Enable options usually used for instrumenting application to produce
profile useful for later recompilation with profile feedback based
optimization. You must use -fprofile-generate both when
compiling and when linking your program.
The following options are enabled: -fprofile-arcs, -fprofile-values, -fvpt.
- -fprofile-use
Enable profile feedback directed optimizations, and optimizations
generally profitable only with profile feedback available.
The following options are enabled: -fbranch-probabilities,
-fvpt, -funroll-loops, -fpeel-loops, -ftracer.