|
7.7 Comparing Sequences and Other Types
Sequence objects may be compared to other objects with the same
sequence type. The comparison uses lexicographical ordering:
first the first two items are compared, and if they differ this
determines the outcome of the comparison; if they are equal, the next
two items are compared, and so on, until either sequence is exhausted.
If two items to be compared are themselves sequences of the same type,
the lexicographical comparison is carried out recursively. If all
items of two sequences compare equal, the sequences are considered
equal. If one sequence is an initial sub-sequence of the other, the
shorter sequence is the smaller (lesser) one. Lexicographical
ordering for strings uses the ASCII ordering for individual
characters. Some examples of comparisons between sequences with the
same types:
(1, 2, 3) < (1, 2, 4)
[1, 2, 3] < [1, 2, 4]
'ABC' < 'C' < 'Pascal' < 'Python'
(1, 2, 3, 4) < (1, 2, 4)
(1, 2) < (1, 2, -1)
(1, 2, 3) == (1.0, 2.0, 3.0)
(1, 2, ('aa', 'ab')) < (1, 2, ('abc', 'a'), 4)
Note that comparing objects of different types is legal. The outcome
is deterministic but arbitrary: the types are ordered by their name.
Thus, a list is always smaller than a string, a string is always
smaller than a tuple, etc. Mixed numeric types are compared according
to their numeric value, so 0 equals 0.0, etc.(2)
|
|