Decode options from the vector argv (whose length is argc).
The argument shortopts describes the short options to accept, just as
it does in getopt
. The argument longopts describes the long
options to accept (see above).
When getopt_long
encounters a short option, it does the same
thing that getopt
would do: it returns the character code for the
option, and stores the options argument (if it has one) in optarg
.
When getopt_long
encounters a long option, it takes actions based
on the flag
and val
fields of the definition of that
option.
If flag
is a null pointer, then getopt_long
returns the
contents of val
to indicate which option it found. You should
arrange distinct values in the val
field for options with
different meanings, so you can decode these values after
getopt_long
returns. If the long option is equivalent to a short
option, you can use the short option's character code in val
.
If flag
is not a null pointer, that means this option should just
set a flag in the program. The flag is a variable of type int
that you define. Put the address of the flag in the flag
field.
Put in the val
field the value you would like this option to
store in the flag. In this case, getopt_long
returns 0
.
For any long option, getopt_long
tells you the index in the array
longopts of the options definition, by storing it into
*
indexptr. You can get the name of the option with
longopts[*
indexptr].name
. So you can distinguish among
long options either by the values in their val
fields or by their
indices. You can also distinguish in this way among long options that
set flags.
When a long option has an argument, getopt_long
puts the argument
value in the variable optarg
before returning. When the option
has no argument, the value in optarg
is a null pointer. This is
how you can tell whether an optional argument was supplied.
When getopt_long
has no more options to handle, it returns
-1
, and leaves in the variable optind
the index in
argv of the next remaining argument.