Follow Techotopia on Twitter

On-line Guides
All Guides
eBook Store
iOS / Android
Linux for Beginners
Office Productivity
Linux Installation
Linux Security
Linux Utilities
Linux Virtualization
Linux Kernel
System/Network Admin
Programming
Scripting Languages
Development Tools
Web Development
GUI Toolkits/Desktop
Databases
Mail Systems
openSolaris
Eclipse Documentation
Techotopia.com
Virtuatopia.com
Answertopia.com

How To Guides
Virtualization
General System Admin
Linux Security
Linux Filesystems
Web Servers
Graphics & Desktop
PC Hardware
Windows
Problem Solutions
Privacy Policy

  




 

 

5.5. Floppies

A floppy disk consists of a flexible membrane covered on one or both sides with similar magnetic substance as a hard disk. The floppy disk itself doesn't have a read-write head, that is included in the drive. A floppy corresponds to one platter in a hard disk, but is removable and one drive can be used to access different floppies, and the same floppy can be read by many drives, whereas the hard disk is one indivisible unit.

Like a hard disk, a floppy is divided into tracks and sectors (and the two corresponding tracks on either side of a floppy form a cylinder), but there are many fewer of them than on a hard disk.

A floppy drive can usually use several different types of disks; for example, a 3.5 inch drive can use both 720 KB and 1.44 MB disks. Since the drive has to operate a bit differently and the operating system must know how big the disk is, there are many device files for floppy drives, one per combination of drive and disk type. Therefore, /dev/fd0H1440 is the first floppy drive (fd0), which must be a 3.5 inch drive, using a 3.5 inch, high density disk (H) of size 1440 KB (1440), i.e., a normal 3.5 inch HD floppy.

The names for floppy drives are complex, however, and Linux therefore has a special floppy device type that automatically detects the type of the disk in the drive. It works by trying to read the first sector of a newly inserted floppy using different floppy types until it finds the correct one. This naturally requires that the floppy is formatted first. The automatic devices are called /dev/fd0, /dev/fd1, and so on.

The parameters the automatic device uses to access a disk can also be set using the program setfdprm . This can be useful if you need to use disks that do not follow any usual floppy sizes, e.g., if they have an unusual number of sectors, or if the autodetecting for some reason fails and the proper device file is missing.

Linux can handle many nonstandard floppy disk formats in addition to all the standard ones. Some of these require using special formatting programs. We'll skip these disk types for now, but in the mean time you can examine the /etc/fdprm file. It specifies the settings that setfdprm recognizes.

The operating system must know when a disk has been changed in a floppy drive, for example, in order to avoid using cached data from the previous disk. Unfortunately, the signal line that is used for this is sometimes broken, and worse, this won't always be noticeable when using the drive from within MS-DOS. If you are experiencing weird problems using floppies, this might be the reason. The only way to correct it is to repair the floppy drive.

 
 
  Published under the terms of the GNU General Public License Design by Interspire