Follow Techotopia on Twitter

On-line Guides
All Guides
eBook Store
iOS / Android
Linux for Beginners
Office Productivity
Linux Installation
Linux Security
Linux Utilities
Linux Virtualization
Linux Kernel
System/Network Admin
Programming
Scripting Languages
Development Tools
Web Development
GUI Toolkits/Desktop
Databases
Mail Systems
openSolaris
Eclipse Documentation
Techotopia.com
Virtuatopia.com
Answertopia.com

How To Guides
Virtualization
General System Admin
Linux Security
Linux Filesystems
Web Servers
Graphics & Desktop
PC Hardware
Windows
Problem Solutions
Privacy Policy

  




 

 

16.5.2. ndbd, the Storage Engine Node Process

ndbd is the process that is used to handle all the data in tables using the NDB Cluster storage engine. This is the process that empowers a storage node to accomplish distributed transaction handling, node recovery, checkpointing to disk, online backup, and related tasks.

In a MySQL Cluster, a set of ndbd processes cooperate in handling data. These processes can execute on the same computer (host) or on different computers. The correspondences between data nodes and Cluster hosts is completely configurable.

ndbd generates a set of log files which are placed in the directory specified by DataDir in the config.ini configuration file. These log files are listed below. Note that node_id represents the node's unique identifier. For example, ndb_2_error.log is the error log generated by the storage node whose node ID is 2.

  • ndb_node_id_error.log is a file containing records of all crashes which the referenced ndbd process has encountered. Each record in this file contains a brief error string and a reference to a trace file for this crash. A typical entry in this file might appear as shown here:

    Date/Time: Saturday 30 July 2004 - 00:20:01
    Type of error: error
    Message: Internal program error (failed ndbrequire)
    Fault ID: 2341
    Problem data: DbtupFixAlloc.cpp
    Object of reference: DBTUP (Line: 173)
    ProgramName: NDB Kernel
    ProcessID: 14909
    TraceFile: ndb_2_trace.log.2
    ***EOM***
    

    Note: It is very important to be aware that the last entry in the error log file is not necessarily the newest one (nor is it likely to be). Entries in the error log are not listed in chronological order; rather, they correspond to the order of the trace files as determined in the ndb_node_id_trace.log.next file (see below). Error log entries are thus overwritten in a cyclical and not sequential fashion.

  • ndb_node_id_trace.log.trace_id is a trace file describing exactly what happened just before the error occurred. This information is useful for analysis by the MySQL Cluster development team.

    It is possible to configure the number of these trace files that will be created before old files are overwritten. trace_id is a number which is incremented for each successive trace file.

  • ndb_node_id_trace.log.next is the file that keeps track of the next trace file number to be assigned.

  • ndb_node_id_out.log is a file containing any data output by the ndbd process. This file is created only if ndbd is started as a daemon.

  • ndb_node_id.pid is a file containing the process ID of the ndbd process when started as a daemon. It also functions as a lock file to avoid the starting of nodes with the same identifier.

  • ndb_node_id_signal.log is a file used only in debug versions of ndbd, where it is possible to trace all incoming, outgoing, and internal messages with their data in the ndbd process.

It is recommended not to use a directory mounted through NFS because in some environments this can cause problems whereby the lock on the .pid file remains in effect even after the process has terminated.

To start ndbd, it may also be necessary to specify the hostname of the management server and the port on which it is listening. Optionally, one may also specify the node ID that the process is to use.

shell> ndbd --connect-string="nodeid=2;host=ndb_mgmd.mysql.com:1186"

See Section 16.4.4.2, “The MySQL Cluster connectstring, for additional information about this issue. Section 16.5.5, “Command Options for MySQL Cluster Processes”, describes other options for ndbd.

When ndbd starts, it actually initiates two processes. The first of these is called the “angel process”; its only job is to discover when the execution process has been completed, and then to restart the ndbd process if it is configured to do so. Thus, if you attempt to kill ndbd via the Unix kill command, it is necessary to kill both processes, beginning with the angel process. The preferred method of terminating an ndbd process is to use the management client and stop the process from there.

The execution process uses one thread for reading, writing, and scanning data, as well as all other activities. This thread is implemented asynchronously so that it can easily handle thousands of concurrent activites. In addition, a watch-dog thread supervises the execution thread to make sure that it does not hang in an endless loop. A pool of threads handles file I/O, with each thread able to handle one open file. Threads can also be used for transporter connections by the transporters in the ndbd process. In a system performing a large number of operations, including updates, the ndbd process can consume up to 2 CPUs if permitted to do so. For a machine with many CPUs it is recommended to use several ndbd processes which belong to different node groups.


 
 
  Published under the terms of the GNU General Public License Design by Interspire