Follow Techotopia on Twitter

On-line Guides
All Guides
eBook Store
iOS / Android
Linux for Beginners
Office Productivity
Linux Installation
Linux Security
Linux Utilities
Linux Virtualization
Linux Kernel
System/Network Admin
Programming
Scripting Languages
Development Tools
Web Development
GUI Toolkits/Desktop
Databases
Mail Systems
openSolaris
Eclipse Documentation
Techotopia.com
Virtuatopia.com
Answertopia.com

How To Guides
Virtualization
General System Admin
Linux Security
Linux Filesystems
Web Servers
Graphics & Desktop
PC Hardware
Windows
Problem Solutions
Privacy Policy

  




 

 

7.4.7. MyISAM Index Statistics Collection

Storage engines collect statistics about tables for use by the optimizer. Table statistics are based on value groups, where a value group is a set of rows with the same key prefix value. For optimizer purposes, an important statistic is the average value group size.

MySQL uses the average value group size in the following ways:

  • To estimate how may rows must be read for each ref access

  • To estimate how many row a partial join will produce; that is, the number of rows that an operation of this form will produce:

    (...) JOIN tbl_name ON tbl_name.key = expr
    

As the average value group size for an index increases, the index is less useful for those two purposes because the average number of rows per lookup increases: For the index to be good for optimization purposes, it is best that each index value target a small number of rows in the table. When a given index value yields a large number of rows, the index is less useful and MySQL is less likely to use it.

The average value group size is related to table cardinality, which is the number of value groups. The SHOW INDEX statement displays a cardinality value based on N/S, where N is the number of rows in the table and S is the average value group size. That ratio yields an approximate number of value groups in the table.

For a join based on the <=> comparison operator, NULL is not treated differently from any other value: NULL <=> NULL, just as N <=> N for any other N.

However, for a join based on the = operator, NULL is different from non-NULL values: expr1 = expr2 is not true when expr1 or expr2 (or both) are NULL. This affects ref accesses for comparisons of the form tbl_name.key = expr: MySQL will not access the table if the current value of expr is NULL, because the comparison cannot be true.

For = comparisons, it does not matter how many NULL values are in the table. For optimization purposes, the relevant value is the average size of the non-NULL values groups. However, MySQL does not currently allow that average size to be collected or used.

For MyISAM tables, you have some control over collection of table statistics by means of the myisam_stats_method system variable. This variable has two possible values, which differ as follows:

  • When myisam_stats_method is nulls_equal, all NULL values are treated as identical (that is, they all form a single value group).

    If the NULL value group size is much higher than the average non-NULL value group size, this method skews the average value group size upward. This makes index appear to the optimizer to be less useful than it really is for joins that look for non-NULL values. Consequently, the nulls_equal method may cause the optimizer not to use the index for ref accesses when it should.

  • When myisam_stats_method is nulls_unequal, NULL values are not considered the same. Instead, each NULL value forms a separate value group of size 1.

    If you have many NULL values, this method skews the average value group size downward. If the average non-NULL value group size is large, counting NULL values each as a group of size 1 causes the optimizer to overestimate the value of the index for joins that look for non-NULL values. Consequently, the nulls_unequal method may cause the optimizer to use this index for ref lookups when other methods may be better.

If you tend to use many joins that use <=> rather than =, NULL values are not special in comparisons and one NULL is equal to another. In this case, nulls_equal is the appropriate statistics method.

The myisam_stats_method system variable has global and session values. Setting the global value affects MyISAM statistics collection for all MyISAM tables. Setting the session value affects statistics collection only for the current client connection. This means that you can force a table's statistics to be regenerated with a given method without affecting other clients by setting the session value of myisam_stats_method.

To regenerate table statistics, you can use any of the following methods:

  • Set myisam_stats_method, and then issue a CHECK TABLE statement

  • Execute myisamchk --stats_method=method_name --analyze

  • Change the table to cause its statistics to go out of date (for example, insert a row and then delete it), and then set myisam_stats_method and issue an ANALYZE TABLE statement

Some caveats regarding the use of myisam_stats_method:

You can force table statistics to be collected explicitly, as just described. However, MySQL may also collect statistics automatically. For example, if during the course of executing statements for a table, some of those statements modify the table, MySQL may collect statistics. (This may occur for bulk inserts or deletes, or some ALTER TABLE statements, for example.) If this happens, the statistics are collected using whatever value myisam_stats_method has at the time. Thus, if you collect statistics using one method, but myisam_stats_method is set to the other method when a table's statistics are collected automatically later, the other method will be used.

There is no way to tell which method was used to generate statistics for a given MyISAM table.

myisam_stats_method applies only to MyISAM tables. Other storage engines have only one method for collecting table statistics. Usually it is closer to the nulls_equal method.


 
 
  Published under the terms of the GNU General Public License Design by Interspire