Follow Techotopia on Twitter

On-line Guides
All Guides
eBook Store
iOS / Android
Linux for Beginners
Office Productivity
Linux Installation
Linux Security
Linux Utilities
Linux Virtualization
Linux Kernel
System/Network Admin
Programming
Scripting Languages
Development Tools
Web Development
GUI Toolkits/Desktop
Databases
Mail Systems
openSolaris
Eclipse Documentation
Techotopia.com
Virtuatopia.com
Answertopia.com

How To Guides
Virtualization
General System Admin
Linux Security
Linux Filesystems
Web Servers
Graphics & Desktop
PC Hardware
Windows
Problem Solutions
Privacy Policy

  




 

 

NOTE: CentOS Enterprise Linux is built from the Red Hat Enterprise Linux source code. Other than logo and name changes CentOS Enterprise Linux is compatible with the equivalent Red Hat version. This document applies equally to both Red Hat and CentOS Enterprise Linux.

20.5. More Than a Secure Shell

A secure command line interface is just the beginning of the many ways SSH can be used. Given the proper amount of bandwidth, X11 sessions can be directed over an SSH channel. Or, by using TCP/IP forwarding, previously insecure port connections between systems can be mapped to specific SSH channels.

20.5.1. X11 Forwarding

Opening an X11 session over an established SSH connection is as easy as running an X program on a local machine. When an X program is run from the secure shell prompt, the SSH client and server create a new secure channel, and the X program data is sent over that channel to the client machine transparently.

X11 forwarding can be very useful. For example, X11 forwarding can be used to create a secure, interactive session with up2date. To do this, connect to the server using ssh and type:

up2date &

After supplying the root password for the server, the Red Hat Update Agent appears and allows the remote user to safely update the remote system.

20.5.2. Port Forwarding

SSH can secure otherwise insecure TCP/IP protocols via port forwarding. When using this technique, the SSH server becomes an encrypted conduit to the SSH client.

Port forwarding works by mapping a local port on the client to a remote port on the server. SSH can map any port from the server to any port on the client; port numbers do not need to match for this technique to work.

To create a TCP/IP port forwarding channel which listens for connections on the localhost, use the following command:

ssh -L local-port:remote-hostname:remote-port username@hostname
Note Note
 

Setting up port forwarding to listen on ports below 1024 requires root level access.

To check email on a server called mail.example.com using POP3 through an encrypted connection, use the following command:

ssh -L 1100:mail.example.com:110 mail.example.com

Once the port forwarding channel is in place between the client machine and the mail server, direct a POP3 mail client to use port 1100 on the localhost to check for new mail. Any requests sent to port 1100 on the client system are directed securely to the mail.example.com server.

If mail.example.com is not running an SSH server, but another machine on the same network is, SSH can still be used to secure part of the connection. However, a slightly different command is necessary:

ssh -L 1100:mail.example.com:110 other.example.com

In this example, POP3 requests from port 1100 on the client machine are forwarded through the SSH connection on port 22 to the SSH server, other.example.com. Then, other.example.com connects to port 110 on mail.example.com to check for new mail. Note, when using this technique only the connection between the client system and other.example.com SSH server is secure.

Port forwarding can also be used to get information securely through network firewalls. If the firewall is configured to allow SSH traffic via its standard port (22) but blocks access to other ports, a connection between two hosts using the blocked ports is still possible by redirecting their communication over an established SSH connection.

Note Note
 

Using port forwarding to forward connections in this manner allows any user on the client system to connect to that service. If the client system becomes compromised, the attacker also has access to forwarded services.

System administrators concerned about port forwarding can disable this functionality on the server by specifying a No parameter for the AllowTcpForwarding line in /etc/ssh/sshd_config and restarting the sshd service.

 
 
  Published under the terms of the GNU General Public License Design by Interspire