Follow Techotopia on Twitter

On-line Guides
All Guides
eBook Store
iOS / Android
Linux for Beginners
Office Productivity
Linux Installation
Linux Security
Linux Utilities
Linux Virtualization
Linux Kernel
System/Network Admin
Programming
Scripting Languages
Development Tools
Web Development
GUI Toolkits/Desktop
Databases
Mail Systems
openSolaris
Eclipse Documentation
Techotopia.com
Virtuatopia.com
Answertopia.com

How To Guides
Virtualization
General System Admin
Linux Security
Linux Filesystems
Web Servers
Graphics & Desktop
PC Hardware
Windows
Problem Solutions
Privacy Policy

  




 

 

Thinking in C++ Vol 2 - Practical Programming
Prev Home Next

Builder: creating complex objects

The goal of Builder (which is a Creational pattern, like the Factories we ve just looked at) is to separate the construction of an object from its representation. This means that the construction process stays the same, but the resulting object has different possible representations. GoF points out that the main difference between Builder and Abstract Factory is that a Builder creates the object step-by-step, so the fact that the creation process is spread out in time seems to be important. In addition, the director gets a stream of pieces that it passes to the Builder, and each piece is used to perform one of the steps in the build process.

The following example models a bicycle that can have a choice of parts, according to its type (mountain bike, touring bike, or racing bike). A Builder class is associated with each type of bicycle, and each Builder implements the interface specified in the abstract class BicycleBuilder. A separate class, BicycleTechnician, represents the director object described in GoF, and uses a concrete BicycleBuilder object to construct a Bicycle object.

//: C10:Bicycle.h
// Defines classes to build bicycles;
// Illustrates the Builder design pattern.
#ifndef BICYCLE_H
#define BICYCLE_H
#include <iostream>
#include <string>
#include <vector>
#include <cstddef>
#include "../purge.h"
using std::size_t;
 
class BicyclePart {
public:
enum BPart { FRAME, WHEEL, SEAT, DERAILLEUR,
HANDLEBAR, SPROCKET, RACK, SHOCK, NPARTS };
private:
BPart id;
static std::string names[NPARTS];
public:
BicyclePart(BPart bp) { id = bp; }
friend std::ostream&
operator<<(std::ostream& os, const BicyclePart& bp) {
return os << bp.names[bp.id];
}
};
 
class Bicycle {
std::vector<BicyclePart*> parts;
public:
~Bicycle() { purge(parts); }
void addPart(BicyclePart* bp) { parts.push_back(bp); }
friend std::ostream&
operator<<(std::ostream& os, const Bicycle& b) {
os << "{ ";
for(size_t i = 0; i < b.parts.size(); ++i)
os << *b.parts[i] << ' ';
return os << '}';
}
};
 
class BicycleBuilder {
protected:
Bicycle* product;
public:
BicycleBuilder() { product = 0; }
void createProduct() { product = new Bicycle; }
virtual void buildFrame() = 0;
virtual void buildWheel() = 0;
virtual void buildSeat() = 0;
virtual void buildDerailleur() = 0;
virtual void buildHandlebar() = 0;
virtual void buildSprocket() = 0;
virtual void buildRack() = 0;
virtual void buildShock() = 0;
virtual std::string getBikeName() const = 0;
Bicycle* getProduct() {
Bicycle* temp = product;
product = 0; // Relinquish product
return temp;
}
};
 
class MountainBikeBuilder : public BicycleBuilder {
public:
void buildFrame();
void buildWheel();
void buildSeat();
void buildDerailleur();
void buildHandlebar();
void buildSprocket();
void buildRack();
void buildShock();
std::string getBikeName() const { return "MountainBike";}
};
 
class TouringBikeBuilder : public BicycleBuilder {
public:
void buildFrame();
void buildWheel();
void buildSeat();
void buildDerailleur();
void buildHandlebar();
void buildSprocket();
void buildRack();
void buildShock();
std::string getBikeName() const { return "TouringBike"; }
};
 
class RacingBikeBuilder : public BicycleBuilder {
public:
void buildFrame();
void buildWheel();
void buildSeat();
void buildDerailleur();
void buildHandlebar();
void buildSprocket();
void buildRack();
void buildShock();
std::string getBikeName() const { return "RacingBike"; }
};
 
class BicycleTechnician {
BicycleBuilder* builder;
public:
BicycleTechnician() { builder = 0; }
void setBuilder(BicycleBuilder* b) { builder = b; }
void construct();
};
#endif // BICYCLE_H ///:~
 

A Bicycle holds a vector of pointers to BicyclePart, representing the parts used to construct the bicycle. To initiate the construction of a bicycle, a BicycleTechnician (the director in this example) calls BicycleBuilder::createproduct( ) on a derived BicycleBuilder object. The BicycleTechnician::construct( ) function calls all the functions in the BicycleBuilder interface (since it doesn t know what type of concrete builder it has). The concrete builder classes omit (via empty function bodies) those actions that do not apply to the type of bicycle they build, as you can see in the following implementation file:

//: C10:Bicycle.cpp {O} {-mwcc}
#include "Bicycle.h"
#include <cassert>
#include <cstddef>
using namespace std;
 
std::string BicyclePart::names[NPARTS] = {
"Frame", "Wheel", "Seat", "Derailleur",
"Handlebar", "Sprocket", "Rack", "Shock" };
 
// MountainBikeBuilder implementation
void MountainBikeBuilder::buildFrame() {
product->addPart(new BicyclePart(BicyclePart::FRAME));
}
void MountainBikeBuilder::buildWheel() {
product->addPart(new BicyclePart(BicyclePart::WHEEL));
}
void MountainBikeBuilder::buildSeat() {
product->addPart(new BicyclePart(BicyclePart::SEAT));
}
void MountainBikeBuilder::buildDerailleur() {
product->addPart(
new BicyclePart(BicyclePart::DERAILLEUR));
}
void MountainBikeBuilder::buildHandlebar() {
product->addPart(
new BicyclePart(BicyclePart::HANDLEBAR));
}
void MountainBikeBuilder::buildSprocket() {
product->addPart(new BicyclePart(BicyclePart::SPROCKET));
}
void MountainBikeBuilder::buildRack() {}
void MountainBikeBuilder::buildShock() {
product->addPart(new BicyclePart(BicyclePart::SHOCK));
}
 
// TouringBikeBuilder implementation
void TouringBikeBuilder::buildFrame() {
product->addPart(new BicyclePart(BicyclePart::FRAME));
}
void TouringBikeBuilder::buildWheel() {
product->addPart(new BicyclePart(BicyclePart::WHEEL));
}
void TouringBikeBuilder::buildSeat() {
product->addPart(new BicyclePart(BicyclePart::SEAT));
}
void TouringBikeBuilder::buildDerailleur() {
product->addPart(
new BicyclePart(BicyclePart::DERAILLEUR));
}
void TouringBikeBuilder::buildHandlebar() {
product->addPart(
new BicyclePart(BicyclePart::HANDLEBAR));
}
void TouringBikeBuilder::buildSprocket() {
product->addPart(new BicyclePart(BicyclePart::SPROCKET));
}
void TouringBikeBuilder::buildRack() {
product->addPart(new BicyclePart(BicyclePart::RACK));
}
void TouringBikeBuilder::buildShock() {}
 
// RacingBikeBuilder implementation
void RacingBikeBuilder::buildFrame() {
product->addPart(new BicyclePart(BicyclePart::FRAME));
}
void RacingBikeBuilder::buildWheel() {
product->addPart(new BicyclePart(BicyclePart::WHEEL));
}
void RacingBikeBuilder::buildSeat() {
product->addPart(new BicyclePart(BicyclePart::SEAT));
}
void RacingBikeBuilder::buildDerailleur() {}
void RacingBikeBuilder::buildHandlebar() {
product->addPart(
new BicyclePart(BicyclePart::HANDLEBAR));
}
void RacingBikeBuilder::buildSprocket() {
product->addPart(new BicyclePart(BicyclePart::SPROCKET));
}
void RacingBikeBuilder::buildRack() {}
void RacingBikeBuilder::buildShock() {}
 
// BicycleTechnician implementation
void BicycleTechnician::construct() {
assert(builder);
builder->createProduct();
builder->buildFrame();
builder->buildWheel();
builder->buildSeat();
builder->buildDerailleur();
builder->buildHandlebar();
builder->buildSprocket();
builder->buildRack();
builder->buildShock();
} ///:~
 

The Bicycle stream inserter calls the corresponding inserter for each BicyclePart, and that prints its type name so that you can see what a Bicycle contains. Here is a sample program:

//: C10:BuildBicycles.cpp
//{L} Bicycle
// The Builder design pattern.
#include <cstddef>
#include <iostream>
#include <map>
#include <vector>
#include "Bicycle.h"
#include "../purge.h"
using namespace std;
 
// Constructs a bike via a concrete builder
Bicycle* buildMeABike(
BicycleTechnician& t, BicycleBuilder* builder) {
t.setBuilder(builder);
t.construct();
Bicycle* b = builder->getProduct();
cout << "Built a " << builder->getBikeName() << endl;
return b;
}
 
int main() {
// Create an order for some bicycles
map <string, size_t> order;
order["mountain"] = 2;
order["touring"] = 1;
order["racing"] = 3;
 
// Build bikes
vector<Bicycle*> bikes;
BicycleBuilder* m = new MountainBikeBuilder;
BicycleBuilder* t = new TouringBikeBuilder;
BicycleBuilder* r = new RacingBikeBuilder;
BicycleTechnician tech;
map<string, size_t>::iterator it = order.begin();
while(it != order.end()) {
BicycleBuilder* builder;
if(it->first == "mountain")
builder = m;
else if(it->first == "touring")
builder = t;
else if(it->first == "racing")
builder = r;
for(size_t i = 0; i < it->second; ++i)
bikes.push_back(buildMeABike(tech, builder));
++it;
}
delete m;
delete t;
delete r;
 
// Display inventory
for(size_t i = 0; i < bikes.size(); ++i)
cout << "Bicycle: " << *bikes[i] << endl;
purge(bikes);
}
 
/* Output:
Built a MountainBike
Built a MountainBike
Built a RacingBike
Built a RacingBike
Built a RacingBike
Built a TouringBike
Bicycle: {
Frame Wheel Seat Derailleur Handlebar Sprocket Shock }
Bicycle: {
Frame Wheel Seat Derailleur Handlebar Sprocket Shock }
Bicycle: { Frame Wheel Seat Handlebar Sprocket }
Bicycle: { Frame Wheel Seat Handlebar Sprocket }
Bicycle: { Frame Wheel Seat Handlebar Sprocket }
Bicycle: {
Frame Wheel Seat Derailleur Handlebar Sprocket Rack }
*/ ///:~
 

The power of this pattern is that it separates the algorithm for assembling parts into a complete product from the parts themselves and allows different algorithms for different products via different implementations of a common interface.

Thinking in C++ Vol 2 - Practical Programming
Prev Home Next

 
 
   Reproduced courtesy of Bruce Eckel, MindView, Inc. Design by Interspire