Follow Techotopia on Twitter

On-line Guides
All Guides
eBook Store
iOS / Android
Linux for Beginners
Office Productivity
Linux Installation
Linux Security
Linux Utilities
Linux Virtualization
Linux Kernel
System/Network Admin
Programming
Scripting Languages
Development Tools
Web Development
GUI Toolkits/Desktop
Databases
Mail Systems
openSolaris
Eclipse Documentation
Techotopia.com
Virtuatopia.com
Answertopia.com

How To Guides
Virtualization
General System Admin
Linux Security
Linux Filesystems
Web Servers
Graphics & Desktop
PC Hardware
Windows
Problem Solutions
Privacy Policy

  




 

 

5.6.2 Particular Header Checks

These macros check for particular system header files—whether they exist, and in some cases whether they declare certain symbols.

— Macro: AC_HEADER_ASSERT

Check whether to enable assertions in the style of assert.h. Assertions are enabled by default, but the user can override this by invoking configure with the --disable-assert option.

— Macro: AC_HEADER_DIRENT

Check for the following header files. For the first one that is found and defines ‘DIR’, define the listed C preprocessor macro:

dirent.h HAVE_DIRENT_H
sys/ndir.h HAVE_SYS_NDIR_H
sys/dir.h HAVE_SYS_DIR_H
ndir.h HAVE_NDIR_H

The directory-library declarations in your source code should look something like the following:

          #include <sys/types.h>
          #ifdef HAVE_DIRENT_H
          # include <dirent.h>
          # define NAMLEN(dirent) strlen ((dirent)->d_name)
          #else
          # define dirent direct
          # define NAMLEN(dirent) ((dirent)->d_namlen)
          # if HAVE_SYS_NDIR_H
          #  include <sys/ndir.h>
          # endif
          # if HAVE_SYS_DIR_H
          #  include <sys/dir.h>
          # endif
          # if HAVE_NDIR_H
          #  include <ndir.h>
          # endif
          #endif
     

Using the above declarations, the program would declare variables to be of type struct dirent, not struct direct, and would access the length of a directory entry name by passing a pointer to a struct dirent to the NAMLEN macro.

This macro also checks for the SCO Xenix dir and x libraries.

This macro is obsolescent, as all current systems with directory libraries have <dirent.h>. New programs need not use this macro.

Also see AC_STRUCT_DIRENT_D_INO and AC_STRUCT_DIRENT_D_TYPE (see Particular Structures).

— Macro: AC_HEADER_MAJOR

If sys/types.h does not define major, minor, and makedev, but sys/mkdev.h does, define MAJOR_IN_MKDEV; otherwise, if sys/sysmacros.h does, define MAJOR_IN_SYSMACROS.

— Macro: AC_HEADER_RESOLV

Checks for header resolv.h, checking for prerequisites first. To properly use resolv.h, your code should contain something like the following:

     
     #if HAVE_SYS_TYPES_H
     #  include <sys/types.h>
     #endif
     #ifdef HAVE_NETINET_IN_H
     #  include <netinet/in.h>   /* inet_ functions / structs */
     #endif
     #ifdef HAVE_ARPA_NAMESER_H
     #  include <arpa/nameser.h> /* DNS HEADER struct */
     #endif
     #ifdef HAVE_NETDB_H
     #  include <netdb.h>
     #endif
     #include <resolv.h>

— Macro: AC_HEADER_STAT

If the macros S_ISDIR, S_ISREG, etc. defined in sys/stat.h do not work properly (returning false positives), define STAT_MACROS_BROKEN. This is the case on Tektronix UTekV, Amdahl UTS and Motorola System V/88.

This macro is obsolescent, as no current systems have the bug. New programs need not use this macro.

— Macro: AC_HEADER_STDBOOL

If stdbool.h exists and conforms to C99, define HAVE_STDBOOL_H to 1; if the type _Bool is defined, define HAVE__BOOL to 1. To fulfill the C99 requirements, your system.h could contain the following code:

     
     #if HAVE_STDBOOL_H
     # include <stdbool.h>
     #else
     # if ! HAVE__BOOL
     #  ifdef __cplusplus
     typedef bool _Bool;
     #  else
     #   define _Bool signed char
     #  endif
     # endif
     # define bool _Bool
     # define false 0
     # define true 1
     # define __bool_true_false_are_defined 1
     #endif

Alternatively you can use the ‘stdbool’ package of Gnulib (see Gnulib); it packages the above code into a replacement header and contains a few other bells and whistles.

— Macro: AC_HEADER_STDC

Define STDC_HEADERS if the system has C header files conforming to ANSI C89 (ISO C90). Specifically, this macro checks for stdlib.h, stdarg.h, string.h, and float.h; if the system has those, it probably has the rest of the C89 header files. This macro also checks whether string.h declares memchr (and thus presumably the other mem functions), whether stdlib.h declare free (and thus presumably malloc and other related functions), and whether the ctype.h macros work on characters with the high bit set, as the C standard requires.

If you use this macro, your code can refer to STDC_HEADERS to determine whether the system has conforming header files (and probably C library functions).

This macro is obsolescent, as current systems have conforming header files. New programs need not use this macro.

Nowadays string.h is part of the C standard and declares functions like strcpy, and strings.h is standardized by Posix and declares BSD functions like bcopy; but historically, string functions were a major sticking point in this area. If you still want to worry about portability to ancient systems without standard headers, there is so much variation that it is probably easier to declare the functions you use than to figure out exactly what the system header files declare. Some ancient systems contained a mix of functions from the C standard and from BSD; some were mostly standard but lacked ‘memmove’; some defined the BSD functions as macros in string.h or strings.h; some had only the BSD functions but string.h; some declared the memory functions in memory.h, some in string.h; etc. It is probably sufficient to check for one string function and one memory function; if the library had the standard versions of those then it probably had most of the others. If you put the following in configure.ac:

          # This example is obsolescent.
          # Nowadays you can omit these macro calls.
          AC_HEADER_STDC
          AC_CHECK_FUNCS([strchr memcpy])
     

then, in your code, you can use declarations like this:

          /* This example is obsolescent.
             Nowadays you can just #include <string.h>.  */
          #if STDC_HEADERS
          # include <string.h>
          #else
          # if !HAVE_STRCHR
          #  define strchr index
          #  define strrchr rindex
          # endif
          char *strchr (), *strrchr ();
          # if !HAVE_MEMCPY
          #  define memcpy(d, s, n) bcopy ((s), (d), (n))
          #  define memmove(d, s, n) bcopy ((s), (d), (n))
          # endif
          #endif
     

If you use a function like memchr, memset, strtok, or strspn, which have no BSD equivalent, then macros don't suffice to port to ancient hosts; you must provide an implementation of each function. An easy way to incorporate your implementations only when needed (since the ones in system C libraries may be hand optimized) is to, taking memchr for example, put it in memchr.c and use ‘AC_REPLACE_FUNCS([memchr])’.

— Macro: AC_HEADER_SYS_WAIT

If sys/wait.h exists and is compatible with Posix, define HAVE_SYS_WAIT_H. Incompatibility can occur if sys/wait.h does not exist, or if it uses the old BSD union wait instead of int to store a status value. If sys/wait.h is not Posix compatible, then instead of including it, define the Posix macros with their usual interpretations. Here is an example:

          #include <sys/types.h>
          #if HAVE_SYS_WAIT_H
          # include <sys/wait.h>
          #endif
          #ifndef WEXITSTATUS
          # define WEXITSTATUS(stat_val) ((unsigned int) (stat_val) >> 8)
          #endif
          #ifndef WIFEXITED
          # define WIFEXITED(stat_val) (((stat_val) & 255) == 0)
          #endif
     

This macro is obsolescent, as current systems are compatible with Posix. New programs need not use this macro.

_POSIX_VERSION is defined when unistd.h is included on Posix systems. If there is no unistd.h, it is definitely not a Posix system. However, some non-Posix systems do have unistd.h.

The way to check whether the system supports Posix is:

     #if HAVE_UNISTD_H
     # include <sys/types.h>
     # include <unistd.h>
     #endif
     
     #ifdef _POSIX_VERSION
     /* Code for Posix systems.  */
     #endif
— Macro: AC_HEADER_TIME

If a program may include both time.h and sys/time.h, define TIME_WITH_SYS_TIME. On some ancient systems, sys/time.h included time.h, but time.h was not protected against multiple inclusion, so programs could not explicitly include both files. This macro is useful in programs that use, for example, struct timeval as well as struct tm. It is best used in conjunction with HAVE_SYS_TIME_H, which can be checked for using AC_CHECK_HEADERS([sys/time.h]).

          #if TIME_WITH_SYS_TIME
          # include <sys/time.h>
          # include <time.h>
          #else
          # if HAVE_SYS_TIME_H
          #  include <sys/time.h>
          # else
          #  include <time.h>
          # endif
          #endif
     

This macro is obsolescent, as current systems can include both files when they exist. New programs need not use this macro.

— Macro: AC_HEADER_TIOCGWINSZ

If the use of TIOCGWINSZ requires <sys/ioctl.h>, then define GWINSZ_IN_SYS_IOCTL. Otherwise TIOCGWINSZ can be found in <termios.h>.

Use:

          #if HAVE_TERMIOS_H
          # include <termios.h>
          #endif
          
          #if GWINSZ_IN_SYS_IOCTL
          # include <sys/ioctl.h>
          #endif
     

 
 
  Published under the terms of the GNU General Public License Design by Interspire